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Abstract S

Let (Xn,n1O and {Y n,n!Ol be two stochastic processes such that

Yn depends on Xn in a stationary manner, i.e. P(YnEAIXn) does not depend

on n. Sufficient conditions are derived for Y to have a limiting distribution.

If X is a Markov chain with stationary transition probabilities and

n

Yn = f(Xn... X n+k) then Yn depends on Xn is a stationary way. Two situations

are considered:(i) {Xn ,nO} has a limiting distribution (ii) (X ,nO1

does not have a limiting distribution and exits every finite set with

probability 1. Several examples are considered including that of a non-

homogeneous Poisson process with periodic rate function where we obtain the

limiting distribution of the interevent times.

Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous

Poisson Processes.
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ril. Let {X ,nO} be a discrete time Markov chain with stationary transition

probabilities. Consider a process { ,n)O defined by

(1.1) Yn =f(XnXnXn)
n n' n+l"' n+k

It snould be emphasized that f and k do not depend upon n. In this paper

we address the following question: under what conditions on the Markov

chain {Xn ,nO} and the function f will Y ,naO) have a limiting distribution?

As a first example of the above situation, suppose {Xn ,nO} is a random

walk, i.e. X= 0 and Xn Z1 + Z2 + + Zn where {Zn ,naO} is a sequence

of i.i.d. random variables. Let Y = f(XnX Here {Xn,n-O}
n f n 'Xn+l) Xn+i Xn Hr X

itself does not possess a limiting distribution (except in the trivial case

where Z n  0 w.p.l for all n-O), but {Yn ,nkO} does have a limiting distribution

(in fact it is a sequence of i.i.d. r.v.)

As a second example consider a nonhomogeneous Poisson process with rate

function X(t). Suppose that x(t) is a periodic function of t. Let X ben

the n-th event occurrence time and let Y = f(X 'X- be then (n9Xn+l) Xn+l X

n-th interevent time. Now, {X ,n-O} is a transient Markov chain, but due to

the periodic nature of x(t), one expects {Yn ,n O to have a limiting distribution.

This example is treated in detail in example 2 of section 3.

Though we have stated the problem for a Markov chain {X ,n O} and its *:-

n

functional process (Y ,nO}, the theory that we develop in the next section,

in fact, does not use the Markov property of {Xn,n>O} or the functional

dependence of Y on Xn, ...%Xn+k . The general structure that we assume is as

follows: -

Let {X ,nOl be a sequence of random variables and {Y ,n-O} be another

n n
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sequence of random variables with the property that

(1.2) P(YncAIXn) does not depend on n."

We derive a sufficient condition under which {Yn ,n O has a limiting distribu-

tion. Notice that if {X ,n l} is a Markov chain with stationary transition
n

probabilities and Y is defined by eq.(l.l) then condition (1.2) is automatically

satisfied.

In theorem I in the next section we state a sufficient condition for the

existence of limiting distribution of {Yn ,n Ol . We also show with an example

that the condition is not necessary. In the general setting of the theorem it

seems difficult to derive a useful necessary condition. Even though the

condition stated in theorem 1 is only sufficient, it is nonetheless a

powerful tool to unify several cases as is shown by the material in sections 3

and 4.

In section 3 we consider stochastic processes (Xn,n-O} having a limiting

distribution. From theorem 1 we obtain proposition 1 which gives the limiting

- distribution of {Y ,n-O}. In section 4 we consider countable state space

stochastic processes {Xn ,n->O which do not possess a limiting distribution and

have the property that {Xn ,nzO! exits every finite set with probability 1. In

proposition 2 we state a sufficient condition for {Y ,n-O} to have a limiting

distribution in this case. Several examples are given to illustrate both the

propositions. Although the results are derived for general stochastic processes,

the examples deal with Markov chains {X n,n>O. This is purely for the sake of

computational ease.

Limit theorems have been studied in the literature for the case when 1Xn,n 1O

is a Markov chain and Yn f(X These limit theorems deal with the partialn nD
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n
sums ):Y.. (See [3]). We are not aware of any theorems for {Yn,nO} itself.1=1 1,..i"

Another specific problem that has been addressed in the literature is If

{X n,n>O1 is a Markov chain, under what conditions is Yn = f(X ) also a Markovn n n

chain? (See [4]). In this paper we are interested in the limiting behaviour

and not the Markov nature of {Y ,nO}.
n

2. Let (:..,F,P) be a probability space and let (E,E) be a measurable

space. Let {X , nO} be a sequence of (E,E) valued random variables on

(.,F,P). Let S be a complete separable metric space and let B(S) be its

Borel o-field and M(S) be the space of probability measures on (S,B(S)). .

Let fYn , n- O} be a sequence of (S,B(S)) valued random variables on (,F,P)

such that

(2.1) P(YnEA( )) = pn (A)
n n

where p.(.) is a mapping from ExB(S) I lR such that

(2.2) for all xEE, px HEM(S)

(2.3) for all AB(S), p (A) is a measurable function on (E,E).

Here, )(Xn) denotes the smallest a-field on s with respect to which Xn is L

measurable.

Let S* = M(S) be equipped with the topology of weak convergence.

(See 11], [6]). Recall that Un u in S* iff for all bounded continuous

functions f on S ffdln f ffdP S* itself is a complete separable
n.. .. . .
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metric space under this topology. (See [6)). Let 8(S*) and M(S*) denote

the Borel a-field on S* and the space of probability measures on (S*,5(S*))

respectively. M(S*) is also equipped with the topology of weak convergence.

Using eq.(2.2) and (2.3) it can be shown that x -* p is a measurable

mapping from (E,E) into (S*,8(S*)) and hence is a (S*,B(S*)) valued randomP n .

variable. Let r denote the distribution of p , i.e. for BeB(S*)
n

(2.4) rn(B) = P(Px (")EB)
nn

With these notations we have the following

Theorem 1: Suppose

(2.5) r n r (say) weakly in M(S*),

then Y converges in distribution to a measure vES* given by
n

(2.6) v(A) f 1 (A)dr(p) (AcB(S)).S* i'Z!

Proof: Let f be a bounded continuous function on S and let F:S* 1 iR be defined

by

(2.7) F(u) = ffd."

Then, by the definition of weak convergence, it follows that F is a bounded

continuous function. Thus from eq. (2.5), we get

..... 6*

- - o
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(2.8) fF(u)drn (I,) -~fF(iddr(p).

Now -

(2.9) fF~p) din (P') =ECF(pX())n n

=E[ff(z)pX (dz)]
n

From eqs. (2.1), (2.2) and (2.3) it follows that

E(f(Y n)Io(Xn)) =ff(z)Px (dz)
n

and hence by eq. (2.9)

(2.10) fF(v)dnn(v~) =ECE[f(Y n)la(Xn)]]

=E[f(Yn)]

* Also,

(2.11) fF(jj)dr(j) f f{f f(z)dlj(z)j din(p)
s* S

=ff(z)dv(z) t
S

* The last equality in eq. (2.11) follows from the definition of v for a simple

function f and then, by the usual arguments for a general function f.
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Thus from eqs. (2.8), (2.10) and (2.11) we have, for all bounded

continuous functions f on S.

(2.12) E(f(Yn)) ff(z)dv(z)

and hence, Yn converges in distribution to v. F'

Remark: The condition (2.5) is not necessary as is shown by the following

example. Let E = {0, ,I1 and let {Xn , n,O be such that, for nO,

P(X2n 0) = P(X2n = 1) =

." P(X2nl

P(X2n+l : ) = 1. -

Let S = {0,1} and define p as follows:

p = x = 1 -p (xE)

Let {Yn' n_>} be S valued random variables satisfying eq. (2.1). Then,

for all n>O,

P(Y 0) = EXn 3 1

and hence, trivially, Yn converges in distribution. However, it is easy

to see that r n does not converge weakly.

- _ r
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The above theorem provides a general framework to study the problems

mentioned in the introduction. In later sections, we discuss several special

problems and obtain sufficient conditions for convergence in distribution

of Yn' n-O. In each of these cases, the results could be proved by

alternate techniques, but the above theorem, whose proof is simple, provides .

a unified view of the problem.

3. In this section we restrict ourselves to the class of stochastic processes
{X n>O1 which possess limiting distributions, i.e. X converges in distribution .

n' n

to some measure n as n-. In the framework of section 2, suppose that E is

a metric space and E is its Borel a-field. The following is an easy consequence

of theorem 1:

Proposition 2: Suppose that

(3.1) x - px is a continuous function from E into S* and

(3.2) Xn converges in distribution to some measure n on (E,E).

Then Y converges in distribution to a measure v on (S,8(S)) defined byn

(3.3) v(A) fp x(A)dTr(x) (AEB(S))
EX

Proof: Eqs. (3.1) and (3.2) imply that px converges in distribution to
n

-. , ° -. %
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r =iro(p ),which is the same as rn- r weakly. Hence Y converges inn n

distribution to v given by, for AEB(S),

S*

f P .(A)drro(p )(.)

=fp (A)d-n(x). f
E X

We now give two examples illustrating the above result. In the remaining

paper, all finite or countable sets will be equipped with the discrete -

topology. Our first example is that of a positive recurrent Markov chain.

Example 1. Let E t O,1,2 .... and let {Xn n :O} be an E-valued Markov chain

with stationar-y transition probabilities given by

P(X1  k+11X0  k) =(k-1),-

P(X1  k-ljX 0  k) =c kl

P(X1 = X1 0) =1.

Let S f -1,1} and Y =X -x . Then eq. (2.1) is satisfied withn n+l n
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Pk( = (k~l)

p0({1}) =1

00

Since the sets E and S are equipped with discrete topology, conditions (2.3)

and (3.1) are trivially satisfied. Now suppose c>B>O. Then {Xn ,naOl is

positive recurrent and its stationary distribution is given by

0T 2at

k 
2 -oL (a)k (kl)

Hence {Xn , n>_O} converges in distribution to r. Hence, by proposition 2,

Yn converges in distribution to v where

\v({l}) = Lim P(Y 1) = 1)({I)k = .nno = .-(( ... ,

-.w ko -,

and

v(O) = Lim P(Y n I

Thus, Y converges in distribution to ( , ) Note that Yn' the increment of
n n

the X nn'O1 process, has a stationary distribution independent of z!'

........- "
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Our next example is that of a non-homogeneous Poisson process.

Example 2. Let {N(t), t 0j be a non-homogeneous Poisson process with

* strictly positive rate function x(t). Assume that x(t) is periodic with

period rTi.e.,

xt+ x (t) for all t40.

Let Z. 0 and Zbe the time that the n-th event occurs, i.e.

Z inf {t Z N(t) > N(Z )Jni0.n+l n n

and let Y n Zn+1-Zn be the nth interevent time. Now, for 0--5v !5v
n

P(Zn+I > 1 n V...z v

=P(N(u) =n IN(s):O!5s V vN(v )=n)
n n

exp (-.fu A(s)ds)
Vn

Hence {Zn ,n20} is a Markov chain. As Zn increases with n, it is a transient

Markov chain.

Let (x] denote the largest integer sx and define

*Also, for t-20 define

.......................................... ..
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t1

A~t) fX(s)ds.

N~ow for 0 y < ,

P(Y~ > =1 P(Z ~ >Zn + Y!Zn

= exp (-(A(Z n + y) -A(Z n)))

= exp (-(A(X + y) -A(X))

n n)

+ +
For 0' x < -, let p, denote the probability measure on '(lR ,8(1R )) given by

(3.4) P ((y.-)) =exp (-(A(x + Y) -A(X)))

Then for AE5(lR~ we have

P(Yn CAIZn) =P(YneAIXn) = X (A).
n

Let E [O,1). Equip E with a topology which makes the mapping

x exp (i2T~x/T) a homeomorphism from E onto the unit circle in the complex -

plane. Thus

Xn- x i ff exp(i2Rx /Tr) exp(i2inx/ )

Under this topology E is a complete separable metric space and it can be easily

checked that the mapping x p in eq. (3.4) from E -M(lR) is continuous.

xL
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We shall now show that [Xn n 01O converges in distribution to some

measure on E. In fact, it can be shown that {X , n 0) is a Markov chain on

E with stationary transition probabilities given by

P(X ngIXn x) =eA(X) (e-A(Y) -B) 1(1-B) ifO0 x <y <

*(3.5) =1 -BeA(X) (1 -eA(y))/(, B)

i f 0 !5y !5 X T

where B =exp(-A(r)).

Let f(.,x) be the conditional density of Xn~ given Xn=x. Then from eq.

(3.5) we get (x(y) exp(Ai(x) -A(y))/(l-B) if 0 X < y < T

(3.6) f(y,x)

BX(y) exp(A(x) -A(y))/(1-B) if 0 y x <

By a slight modification of the arguments in Example (b) of VII.7 of Feller

* Vol 2 [ 2], one can show that IXn, n 2t 01 has a limiting distribution. Let

g(-) be the limiting density of X .Then g(-) satisfies
n

g(y) =f~f(y x)g(x)dx.

* Thus

(Y) x (y exp(- A(y)) (f A(X)gxd fT eA(X)g~~x

1-B o Y
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Now let h(y) =g(y) exp(A(y)). Then

h(y) = fyh(x)dx + Bf T h(x)dxj
o y

Differentiating the above equation we get

h'(y) 4 X(y)) h(y)
Ay

which has a unique solution

h(y) ) (y) exp(A(y)) ..

* Hence we get g(y) =CA(y), the constant of integration C is found by using

fg(y)dy I 5

Thus g(y) X (y)/A(T) (0 Y < T) is the limiting density of Xn

Now, using proposition 2, we get the following: {Yns n 01 has a

limiting distribution given by

(3.7) nr (

-fT exp(-(A(x + y) -A(x))) A(x) dx/A(tr)
0*4.
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4. In this section we consider the case in which {Xn , n O} does not

converge in distribution, but {Y ,n2O} does. First we give a general result

and then consider some specific examples.

Suppose that E is a countable set and that

(4.1) Lim P(XnEB) = 0
n

-
w
4 °

r..

for all finite subsets B of E. Furthermore, suppose that there exists a

partition E, jEJ} of E, where either J = {1,2,...,k) or J = {1,2,3,...I,

and each E. is a countable set such that

(4.2) Lim P(XnE.) = EE . exists

and

(4.3) , cj = 1
jEj -.

Now, let {xij} i _ 0 be an enumeration of Ej and suppose that

(4.4) Lim pxi =j

exists. (Recall that M(S) is equipped with the topology of weak convergence.)

With this structure we get the following

7m
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Proposition_3: Let eqs. (4.1) -(4.4) hold. Then (Y ,nO} converges in
no0

distribution to v given by

*(4.5) v(A) Il ~ i(A)ci. (AcB(S)).

Proof: The desired conclusion will follow from Theorem 1 if we show that

(4.6) r r i n M(S*)

where 1, is given by

r(B) z I (pu~aj (BcB(S*)).

* Let f be a bounded continuous function on S*. Then

(4.7) Iffdrn -ffdrl = E(f(pX )) ~ aj
n jeJ

j J Ef(p I [{XnoE J) fY

- E(f(pX f(UP) 1f IV~
I.jEJ n neE

+ ~ijHI( -Ej) -cjI

j EJ

-n ~ + z V' (say)

eqj CA

NO. . . . . . . ... .~. '
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Let n. P(X E.) Then

nn j

(49 aj ~ + E ct. 2 E ct. Act.
(49)EJ je JEJ ic

n
=2 -2 j z LAaj 7

-2 j E t j 0.

(BY dominated convergence theorem.) Since f is bounded eq.(4.9) implies that L

(4.10) Lim E V 0.

Eq. (4.9) also implies that, given c~ 0, there exists a finite subset J
0 0

of J such that,

(4.11) Sup z O
nl jEJ 0 .,

where J= J\J 0 .Eq. (4.11) is actually the assertion that L 1 -convergence

implies uniform integrability.

Next we show that, for jeJ

(4.12) Lim UTI 0.

Recall that p x -* as i-' and f is continuous on S*, so that f(p X)'-f(M')
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Thus, given c>O, there is an i0 such that, for all 1>10

(4.13) -fpf(i , 2

I-Let B [ x. l-!i!5i 0  Then in view of (4.1), there is an no such

that for m

(4.14) P{X EBI 5 E/4K

where K is such that IfI K. Then for n~n4,0 we have

nn

= E{If(px f(Pi )IIl{B XEjB 1

2KP(X cB j+ P(X EE.\B)

E/2 + c/2 (by eqs. (4.13) and (4.14))

This proves eq. (4.12). Now, for a given c>O, define E0 E/2K. For this

get J0 and Jas above, so that eq. (4.11) holds. Then

(4.15)+ 0
JjJ j j J

0



13 of 22

Since Jois finite, we have, using eq. (4.12) and (4.15)

In*(4.16) Lim sup E J' .

Since E>O is arbitrary, this shows that

In
Lim E U. 0.

In view of eq. (4.8), (4.9) and(4.1O) we get

Lim Iffdrn -ffdrl o

IL
which implies rn- .r weakly, and this completes the proof. I

pWe now take two examples illustratinq the above prooosition.

Examle 3.' Consider the same Markov chain {X, n O} from example 1, and

suppose a<a. Then {Xn n-:O1 is a transient Markov chain and hence eq.

* (4.1) holds.

Since Lim Pk P1 where Pi({l}) =0 and Il({-l1) = ,the conditions

of proposition 3 are satisfied if we take E1  E and X iO. Te

Y X ,, converges in distribution to PJe

Lim P(Y~ 1) = , Lim P(Y~ =1) =~

ff n n
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Example 4. Let E ={(j,i) iji integers, 0 .2 j !5 i < Let fXn be a

Markov chain with state space E and stationary transition probabilities

given by

P{n+i ' 1 +')I Xn (0,i)} 1 i0

P{jl XllX. (~) O<j5i <00

n+l (j-i, '+)I X =(n ) =Ojio

Where alf=l, O<B<ci<l. For this chain all states are inessential, as

(ij (j+l, i+1) but (j+l , 1+)M (j,l). Hence IX n aO}is transient

* and eq. (4.1) is satisfied.

Let (Y n O!} be a real valued process such that the conditional

distribution of Yn given X =(j,i) is normal with mean j + 1 and

variance I + 21 Thus

N +1 +. +2-I
p(j~i) N + l j+l

2 2
where N(11 ) denotes the normal distribution with mean v and variance

on (IR , B(lR)).

Now let J ={0,1,2,3,...} and

E.= (jl j
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Also let x. ij (j,j+i) be an enumeration of E. Then from the properties of

the norm'al distribution it follows that

Lrn p~* N(j i

Now let Zn =j if X n E.. It is easily seen that Znitself is a Markov

chain with stationary transition probabilities as described in example 1.g

Thus

Lim P(X JE) Lim P(Z =j) =1
n- Ii4n n

where

' ~2a 'a (j- ci

Thus E nr. 1 and hence eq. (4.2) and (4.3) hold. Hence, by proposition 3,
j=0

(Y ,n l converges in distribution to a measure v given byn

v~1- N(0,l1) + ~ i8 (~J N(j ,1
2al QO8 cx

Noma
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f5. The results in sections 2,3 and 4 can be extended to continuous time

stochastic processes in a straight forward manner. Extension of the results

in section 4 to more general state spaces seems possible but presents many

technical difficulties. The results in section 4 also suggest a relation-

ship between our approach and the boundary theory for Markov chains, but

at this stage we have not been able to make it precise. It should be

mentioned that the result in section 3 about the periodic non-homogeneous

Poisson processes is of interest in itself.

The problem considered in this paper is of interest in the theory of

partially observable processes. In this context one can think of IXn, n2:O1

as the core process and {Y ,n:O} as the observation process. (See [4]).
n

For example X may represent the "state" of the internal components of a .7 -7
n

machine at time n while Yn may represent its "performance", which may be

the only observable quantity about the machine. The limiting behaviour

of the observation process {Yn' n-O} is obviously of importance in the design

of the machine.

•I
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